Full metadata record
DC FieldValueLanguage
dc.contributor.authorFu, Hung-Linen_US
dc.contributor.authorHuang, Kuo-Chingen_US
dc.contributor.authorShiue, Chin-Linen_US
dc.date.accessioned2014-12-08T15:30:13Z-
dc.date.available2014-12-08T15:30:13Z-
dc.date.issued2013-05-01en_US
dc.identifier.issn1382-6905en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10878-012-9492-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/21649-
dc.description.abstractA pebbling move consists of removing two pebbles from one vertex and then placing one pebble at an adjacent vertex. If a distribution delta of pebbles lets us move at least one pebble to each vertex by applying pebbling moves repeatedly(if necessary), then delta is called a pebbling of G. The optimal pebbling number f'(G) of G is the minimum number of pebbles used in a pebbling of G. In this paper, we improve the known upper bound for the optimal pebbling number of the hypercubes Q (n) . Mainly, we prove for large n, by a probabilistic argument.en_US
dc.language.isoen_USen_US
dc.subjectOptimal pebblingen_US
dc.subjectHypercubesen_US
dc.titleA note on optimal pebbling of hypercubesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10878-012-9492-9en_US
dc.identifier.journalJOURNAL OF COMBINATORIAL OPTIMIZATIONen_US
dc.citation.volume25en_US
dc.citation.issue4en_US
dc.citation.spage597en_US
dc.citation.epage601en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000317973700009-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000317973700009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.