Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.contributor.author | Huang, Kuo-Ching | en_US |
dc.contributor.author | Shiue, Chin-Lin | en_US |
dc.date.accessioned | 2014-12-08T15:30:13Z | - |
dc.date.available | 2014-12-08T15:30:13Z | - |
dc.date.issued | 2013-05-01 | en_US |
dc.identifier.issn | 1382-6905 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s10878-012-9492-9 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/21649 | - |
dc.description.abstract | A pebbling move consists of removing two pebbles from one vertex and then placing one pebble at an adjacent vertex. If a distribution delta of pebbles lets us move at least one pebble to each vertex by applying pebbling moves repeatedly(if necessary), then delta is called a pebbling of G. The optimal pebbling number f'(G) of G is the minimum number of pebbles used in a pebbling of G. In this paper, we improve the known upper bound for the optimal pebbling number of the hypercubes Q (n) . Mainly, we prove for large n, by a probabilistic argument. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Optimal pebbling | en_US |
dc.subject | Hypercubes | en_US |
dc.title | A note on optimal pebbling of hypercubes | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10878-012-9492-9 | en_US |
dc.identifier.journal | JOURNAL OF COMBINATORIAL OPTIMIZATION | en_US |
dc.citation.volume | 25 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 597 | en_US |
dc.citation.epage | 601 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000317973700009 | - |
dc.citation.woscount | 1 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.