完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Chun-Haoen_US
dc.contributor.authorTseng, Yu-Cheeen_US
dc.date.accessioned2014-12-08T15:30:14Z-
dc.date.available2014-12-08T15:30:14Z-
dc.date.issued2013-05-01en_US
dc.identifier.issn1530-437Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/JSEN.2012.2235143en_US
dc.identifier.urihttp://hdl.handle.net/11536/21661-
dc.description.abstractThis paper deals with human posture tracking by deploying accelerometers on a human body. One fundamental issue in such scenarios is how to calculate the gravity. This is very challenging especially when the human body parts keep on moving. Fortunately, it is likely that there is a point of the body that touches the ground in most cases. This allows sensors to collaboratively calculate the gravity vector. Assuming multiple accelerometers being deployed on a rigid part of a human body, a recent work proposes a data fusion method to estimate the gravity vector on that rigid part. However, finding the optimal deployment of sensors that minimizes the estimation error of the gravity vector is not addressed. In this paper, we formulate the deployment optimization problem and propose two heuristics, called Metropolis-based method and largest-inter-distance-based method. Simulation and real experimental results show that our schemes are quite effective in finding near-optimal solutions for a variety of rigid body geometries.en_US
dc.language.isoen_USen_US
dc.subjectAccelerometeren_US
dc.subjectdeployment optimizationen_US
dc.subjectmodeling of systems and physical environmentsen_US
dc.subjectwireless sensor networken_US
dc.titleDeploying Sensors for Gravity Measurement in a Body-Area Inertial Sensor Networken_US
dc.typeArticleen_US
dc.identifier.doi10.1109/JSEN.2012.2235143en_US
dc.identifier.journalIEEE SENSORS JOURNALen_US
dc.citation.volume13en_US
dc.citation.issue5en_US
dc.citation.spage1522en_US
dc.citation.epage1533en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000317003900021-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000317003900021.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。