完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Lin, Cheng-Kuan | en_US |
dc.contributor.author | Teng, Yuan-Hsiang | en_US |
dc.contributor.author | Tan, Jimmy J. M. | en_US |
dc.contributor.author | Hsu, Lih-Hsing | en_US |
dc.contributor.author | Marusic, Dragan | en_US |
dc.date.accessioned | 2014-12-08T15:30:16Z | - |
dc.date.available | 2014-12-08T15:30:16Z | - |
dc.date.issued | 2013-04-01 | en_US |
dc.identifier.issn | 0096-3003 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.amc.2013.02.027 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/21679 | - |
dc.description.abstract | A w-container C(u, v) of a graph G is a set of w-disjoint paths joining u to v. A w-container of G is a w*-container if it contains all the nodes of V (G). A bipartite graph G is w*-laceable if there exists a w*-container between any two nodes from different parts of G. Let n and k be any two positive integers with n >= 2 and k <= n. In this paper, we prove that n-dimensional bipartite hypercube-like graphs are f-edge fault k*-laceable for every f <= n - 2 and f + k <= n. (C) 2013 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Hamiltonian | en_US |
dc.subject | Hamiltonian laceable | en_US |
dc.subject | Hypercube networks | en_US |
dc.subject | Hypercube-like network | en_US |
dc.subject | Spanning laceability | en_US |
dc.title | The spanning laceability on the faulty bipartite hypercube-like networks | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.amc.2013.02.027 | en_US |
dc.identifier.journal | APPLIED MATHEMATICS AND COMPUTATION | en_US |
dc.citation.volume | 219 | en_US |
dc.citation.issue | 15 | en_US |
dc.citation.spage | 8095 | en_US |
dc.citation.epage | 8103 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000318051700017 | - |
dc.citation.woscount | 3 | - |
顯示於類別: | 期刊論文 |