Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Ming-Jer | en_US |
dc.contributor.author | Lee, Chien-Chih | en_US |
dc.contributor.author | Chen, Wan-Li | en_US |
dc.date.accessioned | 2014-12-08T15:30:22Z | - |
dc.date.available | 2014-12-08T15:30:22Z | - |
dc.date.issued | 2013-04-01 | en_US |
dc.identifier.issn | 0018-9383 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/TED.2013.2244896 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/21719 | - |
dc.description.abstract | In the literature dedicated to strained p-type metal-oxide-semiconductor field-effect transistor inversion-layer mobility calculation via a k . p valence-band structure, three key strain-related material parameters, namely, the Bir-Pikus deformation potentials a(upsilon), b, and d, were widespread in magnitude. To improve such large discrepancies, in this paper, we conduct sophisticated calculations on < 110 >/(001) and < 110 >/(110) hole inversion-layer mobility for gigapascal-level uniaxial stresses along each of three crystallographic directions. The screening effect on surface roughness scattering is taken into account. We find that, to affect the calculated hole mobility enhancement, a(upsilon) is weak, b is moderate, and d is strong, particularly for the uniaxial compressive stress along the < 110 > direction. This provides experimental guidelines for an optimal determination of the primary factor, i.e., d, and the secondary factor, i.e., b, with the commonly used values for a(upsilon). The result remains valid for varying surface roughness parameters and models and is supported by recent first-principles and tight-binding calculations. Thus, the strained k . p valence-band structure with the optimized deformation potentials can ensure the accuracy of the calculated transport properties of 2-D hole gas under stress. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Bir-Pikus | en_US |
dc.subject | deformation potential | en_US |
dc.subject | hole | en_US |
dc.subject | k . p | en_US |
dc.subject | metal-oxide-semiconductor field-effect transistors (MOSFETs) | en_US |
dc.subject | mobility | en_US |
dc.subject | simulation | en_US |
dc.subject | strain | en_US |
dc.subject | stress | en_US |
dc.subject | tight-binding | en_US |
dc.title | Effect of Strained k . p Deformation Potentials on Hole Inversion-Layer Mobility | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/TED.2013.2244896 | en_US |
dc.identifier.journal | IEEE TRANSACTIONS ON ELECTRON DEVICES | en_US |
dc.citation.volume | 60 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 1365 | en_US |
dc.citation.epage | 1371 | en_US |
dc.contributor.department | 電子工程學系及電子研究所 | zh_TW |
dc.contributor.department | Department of Electronics Engineering and Institute of Electronics | en_US |
dc.identifier.wosnumber | WOS:000316821800012 | - |
dc.citation.woscount | 1 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.