Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fu, Chih-Hao | en_US |
dc.contributor.author | Du, Yi-Jian | en_US |
dc.contributor.author | Feng, Bo | en_US |
dc.date.accessioned | 2014-12-08T15:30:24Z | - |
dc.date.available | 2014-12-08T15:30:24Z | - |
dc.date.issued | 2013-03-01 | en_US |
dc.identifier.issn | 1029-8479 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/JHEP03(2013)050 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/21740 | - |
dc.description.abstract | One important discovery in recent years is that the total amplitude of gauge theory can be written as BCJ form where kinematic numerators satisfy Jacobi identity. Although the existence of such kinematic numerators is no doubt, the simple and explicit construction is still an important problem. As a small step, in this note we provide an algebraic approach to construct these kinematic numerators. Under our Feynman-diagram-like construction, the Jacobi identity is manifestly satisfied. The corresponding color ordered amplitudes satisfy off-shell BCJ relation and off-shell BCJ relation similar to the color ordered scalar theory. Using our construction, the dual DDM form is also established. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Scattering Amplitudes | en_US |
dc.subject | Gauge Symmetry | en_US |
dc.title | An algebraic approach to BCJ numerators | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/JHEP03(2013)050 | en_US |
dc.identifier.journal | JOURNAL OF HIGH ENERGY PHYSICS | en_US |
dc.citation.volume | en_US | |
dc.citation.issue | 3 | en_US |
dc.citation.epage | en_US | |
dc.contributor.department | 電子物理學系 | zh_TW |
dc.contributor.department | Department of Electrophysics | en_US |
dc.identifier.wosnumber | WOS:000317521200050 | - |
dc.citation.woscount | 13 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.