完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFu, Chih-Haoen_US
dc.contributor.authorDu, Yi-Jianen_US
dc.contributor.authorFeng, Boen_US
dc.date.accessioned2014-12-08T15:30:24Z-
dc.date.available2014-12-08T15:30:24Z-
dc.date.issued2013-03-01en_US
dc.identifier.issn1029-8479en_US
dc.identifier.urihttp://dx.doi.org/10.1007/JHEP03(2013)050en_US
dc.identifier.urihttp://hdl.handle.net/11536/21740-
dc.description.abstractOne important discovery in recent years is that the total amplitude of gauge theory can be written as BCJ form where kinematic numerators satisfy Jacobi identity. Although the existence of such kinematic numerators is no doubt, the simple and explicit construction is still an important problem. As a small step, in this note we provide an algebraic approach to construct these kinematic numerators. Under our Feynman-diagram-like construction, the Jacobi identity is manifestly satisfied. The corresponding color ordered amplitudes satisfy off-shell BCJ relation and off-shell BCJ relation similar to the color ordered scalar theory. Using our construction, the dual DDM form is also established.en_US
dc.language.isoen_USen_US
dc.subjectScattering Amplitudesen_US
dc.subjectGauge Symmetryen_US
dc.titleAn algebraic approach to BCJ numeratorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/JHEP03(2013)050en_US
dc.identifier.journalJOURNAL OF HIGH ENERGY PHYSICSen_US
dc.citation.volumeen_US
dc.citation.issue3en_US
dc.citation.epageen_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000317521200050-
dc.citation.woscount13-
顯示於類別:期刊論文


文件中的檔案:

  1. 000317521200050.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。