Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Wen-Feien_US
dc.contributor.authorChen, Hsin-Tsungen_US
dc.contributor.authorLin, M. C.en_US
dc.date.accessioned2014-12-08T15:30:34Z-
dc.date.available2014-12-08T15:30:34Z-
dc.date.issued2013-06-15en_US
dc.identifier.issn0020-7608en_US
dc.identifier.urihttp://dx.doi.org/10.1002/qua.24388en_US
dc.identifier.urihttp://hdl.handle.net/11536/21849-
dc.description.abstractThe adsorption and reactions of the SiHx (x = 0-4) on Titanium dioxide (TiO2) anatase (101) and rutile (110) surfaces have been studied by using periodic density functional theory in conjunction with the projected augmented wave approach. It is found that SiHx (x = 0-4) can form the monodentate, bidentate, or tridentate adsorbates, depending on the value of x. H coadsorption is found to reduce the stability of SiHx adsorption. Hydrogen migration on the TiO2 surfaces is also discussed for elucidation of the SiHx decomposition mechanism. Comparing adsorption energies, energy barriers, and potential energy profiles on the two TiO2 surfaces, the SiHx decomposition can occur more readily on the rutile (110) surface than on the anatase (101) surface. The results may be used for kinetic simulation of Si thin-film deposition and quantum dot preparation on titania by chemical vapor deposition (CVD), plasma enhanced CVD, or catalytically enhanced CVD. (C) 2013 Wiley Periodicals, Inc.en_US
dc.language.isoen_USen_US
dc.subjecttitanium dioxideen_US
dc.subjectgas-surface reactionsen_US
dc.subjectSiHx decompositionen_US
dc.subjectdensity functional theoryen_US
dc.titleComputational Investigation of the Adsorption and Reactions of SiHx (x=0-4) on TiO2 Anatase (101) and Rutile (110) Surfacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/qua.24388en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRYen_US
dc.citation.volume113en_US
dc.citation.issue12en_US
dc.citation.spage1696en_US
dc.citation.epage1708en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.department應用化學系分子科學碩博班zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.contributor.departmentInstitute of Molecular scienceen_US
dc.identifier.wosnumberWOS:000318538100004-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000318538100004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.