完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, Yung-Chouen_US
dc.contributor.authorHsiao, Teshengen_US
dc.date.accessioned2014-12-08T15:30:55Z-
dc.date.available2014-12-08T15:30:55Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-7866-8en_US
dc.identifier.issn1931-0587en_US
dc.identifier.urihttp://hdl.handle.net/11536/22079-
dc.identifier.urihttp://dx.doi.org/10.1109/IVS.2010.5548081en_US
dc.description.abstractIn this paper, a probability-based segmentation approach is presented for object tracking. The proposed approach uses the Dirichlet process mixture model to describe the probabilistic distribution of observations in a single scan of a laserscanner. Then the number of segments is inferred from the observations by the Gibbs sampling method. Moreover each segment is classified into one of the three predefined classes such that most of non-vehicle-like objects on the roadsides can be filtered out. Then, the tracking algorithm, called Joint Integrated Probabilistic Data Association Filter (JIPDAF), is applied to track the classified objects and manage existing tracks. Simulations based on real traffic data demonstrate that the non-vehicle-like objects on the roadsides are suppressed. Since the number of objects in the tracking step is decreased, the computation load of the tracking step is decreased.en_US
dc.language.isoen_USen_US
dc.titleObject Tracking via the Probability-Based Segmentation Using Laser Range Imagesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/IVS.2010.5548081en_US
dc.identifier.journal2010 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV)en_US
dc.citation.spage197en_US
dc.citation.epage202en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000320772200032-
顯示於類別:會議論文


文件中的檔案:

  1. 000320772200032.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。