完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChien, Li-Chuen_US
dc.date.accessioned2014-12-08T15:31:02Z-
dc.date.available2014-12-08T15:31:02Z-
dc.date.issued2013-08-01en_US
dc.identifier.issn0943-4062en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00180-012-0370-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/22122-
dc.description.abstractWe consider the problem of identifying multiple outliers in a general class of beta regression models proposed by Ferrari and Cribari-Neto (J Appl Stat 31:799-815, 2004). The currently available single-case deletion diagnostic measures, e.g., the standardized weighted residual (SWR), the Cook-like distance (LD), etc., often fail to identify multiple outlying observations, because they suffer from the well-known problems of masking and swamping effects. In this article, we develop group deletion diagnostic measures, such as generalized SWR, generalized LD, generalized DFFITS and generalized DFBETAS, and suggest a simple procedure for identifying multiple outliers using these. The performance of the proposed methods is investigated through simulation studies and two practical examples.en_US
dc.language.isoen_USen_US
dc.subjectBeta regressionen_US
dc.subjectMultiple outliersen_US
dc.subjectGeneralized SWRen_US
dc.subjectGeneralized LDen_US
dc.subjectGeneralized DFFITSen_US
dc.subjectGeneralized DFBETASen_US
dc.titleMultiple deletion diagnostics in beta regression modelsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00180-012-0370-9en_US
dc.identifier.journalCOMPUTATIONAL STATISTICSen_US
dc.citation.volume28en_US
dc.citation.issue4en_US
dc.citation.spage1639en_US
dc.citation.epage1661en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000322670200012-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000322670200012.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。