Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | WU, TH | en_US |
dc.contributor.author | YOUNG, KY | en_US |
dc.date.accessioned | 2014-12-08T15:03:41Z | - |
dc.date.available | 2014-12-08T15:03:41Z | - |
dc.date.issued | 1994-12-01 | en_US |
dc.identifier.issn | 0741-2223 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/2228 | - |
dc.description.abstract | We propose a novel and efficient scheme for planning a kinematically feasible path in the presence of obstacles according to task requirements. By employing geometrical analysis, we derive expressions to describe the relationship between the planned path, kinematic constraints, and obstacles in the robot workspace. The freedom available according to task requirements is then utilized to modify the infeasible portions of the planned path. We use a 6R (revolute) wrist-partitioned type of robot manipulator and a spherical obstacle as a case study to demonstrate the proposed scheme. We then extend our results to general wrist-partitioned types of robot manipulators and arbitrarily-shaped or multiple obstacles. (C) 1994 John Wiley & Sons, Inc. | en_US |
dc.language.iso | en_US | en_US |
dc.title | PATH PLANNING IN THE PRESENCE OF OBSTACLES BASED TASK REQUIREMENTS | en_US |
dc.type | Article | en_US |
dc.identifier.journal | JOURNAL OF ROBOTIC SYSTEMS | en_US |
dc.citation.volume | 11 | en_US |
dc.citation.issue | 8 | en_US |
dc.citation.spage | 703 | en_US |
dc.citation.epage | 716 | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
dc.contributor.department | Institute of Electrical and Control Engineering | en_US |
dc.identifier.wosnumber | WOS:A1994QM20700003 | - |
dc.citation.woscount | 3 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.