完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYu, Fuxiangen_US
dc.contributor.authorKo, Ker-Ien_US
dc.date.accessioned2014-12-08T15:31:23Z-
dc.date.available2014-12-08T15:31:23Z-
dc.date.issued2013-06-10en_US
dc.identifier.issn0304-3975en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.tcs.2013.04.008en_US
dc.identifier.urihttp://hdl.handle.net/11536/22298-
dc.description.abstractIn this paper, we study the parallel complexity of analytic functions. We investigate the complexity of computing the derivatives, integrals, and zeros of NC or logarithmic-space computable analytic functions, where NC denotes the complexity class of sets acceptable by polynomial-size, polylogarithmic-depth, uniform Boolean circuits. It is shown that the derivatives and integrals of NC (or logarithmic-space) computable analytic functions remain NC (or, respectively, logarithmic-space) computable. We also study the problem of finding all zeros of an NC computable analytic function inside an NC computable Jordan curve, and show that, under a uniformity condition on the function values on the Jordan curve, all zeros can be found in NC. (c) 2013 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectComplexityen_US
dc.subjectAnalytic functionsen_US
dc.subjectLogarithmic spaceen_US
dc.subjectNCen_US
dc.subjectDerivativesen_US
dc.subjectIntegrationen_US
dc.subjectZero-findingen_US
dc.titleOn parallel complexity of analytic functionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.tcs.2013.04.008en_US
dc.identifier.journalTHEORETICAL COMPUTER SCIENCEen_US
dc.citation.volume489en_US
dc.citation.issueen_US
dc.citation.spage48en_US
dc.citation.epage57en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000320973900004-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000320973900004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。