Full metadata record
DC FieldValueLanguage
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:31:23Z-
dc.date.available2014-12-08T15:31:23Z-
dc.date.issued2013-06-01en_US
dc.identifier.issn1846-3886en_US
dc.identifier.urihttp://dx.doi.org/10.7153/oam-07-28en_US
dc.identifier.urihttp://hdl.handle.net/11536/22307-
dc.description.abstractLet A be an n-by-n (n >= 2) S-n-matrix, that is, A is a contraction with eigenvalues in the open unit disc and with rank (I-n - A* A) = 1, and let W(A) denote its numerical range. We show that (1) if B is a k-by-k (1 <= k < n) compression of A, then W(B) not subset of W (A), (2) if A is in the standard upper-triangular form and B is a k-by-k (1 <= k < n) principal submatrix of A, then partial derivative W(B) boolean AND partial derivative W(A) = empty set, and (3) the maximum value of k for which there is a k-by-k compression of A with all its diagonal entries in partial derivative W(A) is equal to 2 if n = 2, and [n/2] if n >= 3.en_US
dc.language.isoen_USen_US
dc.subjectNumerical rangeen_US
dc.subjectcompressionen_US
dc.subjectS-n-matrixen_US
dc.subjectunitary dilationen_US
dc.titleNUMERICAL RANGES AND COMPRESSIONS OF S-n-MATRICESen_US
dc.typeArticleen_US
dc.identifier.doi10.7153/oam-07-28en_US
dc.identifier.journalOPERATORS AND MATRICESen_US
dc.citation.volume7en_US
dc.citation.issue2en_US
dc.citation.spage465en_US
dc.citation.epage476en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000322355900014-
dc.citation.woscount3-
Appears in Collections:Articles