Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gau, Hwa-Long | en_US |
dc.contributor.author | Wu, Pei Yuan | en_US |
dc.date.accessioned | 2014-12-08T15:31:23Z | - |
dc.date.available | 2014-12-08T15:31:23Z | - |
dc.date.issued | 2013-06-01 | en_US |
dc.identifier.issn | 1846-3886 | en_US |
dc.identifier.uri | http://dx.doi.org/10.7153/oam-07-28 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/22307 | - |
dc.description.abstract | Let A be an n-by-n (n >= 2) S-n-matrix, that is, A is a contraction with eigenvalues in the open unit disc and with rank (I-n - A* A) = 1, and let W(A) denote its numerical range. We show that (1) if B is a k-by-k (1 <= k < n) compression of A, then W(B) not subset of W (A), (2) if A is in the standard upper-triangular form and B is a k-by-k (1 <= k < n) principal submatrix of A, then partial derivative W(B) boolean AND partial derivative W(A) = empty set, and (3) the maximum value of k for which there is a k-by-k compression of A with all its diagonal entries in partial derivative W(A) is equal to 2 if n = 2, and [n/2] if n >= 3. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Numerical range | en_US |
dc.subject | compression | en_US |
dc.subject | S-n-matrix | en_US |
dc.subject | unitary dilation | en_US |
dc.title | NUMERICAL RANGES AND COMPRESSIONS OF S-n-MATRICES | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.7153/oam-07-28 | en_US |
dc.identifier.journal | OPERATORS AND MATRICES | en_US |
dc.citation.volume | 7 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 465 | en_US |
dc.citation.epage | 476 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000322355900014 | - |
dc.citation.woscount | 3 | - |
Appears in Collections: | Articles |