完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Yung-Mingen_US
dc.contributor.authorWu, Chun-Teen_US
dc.contributor.authorLai, Cheng-Yangen_US
dc.date.accessioned2014-12-08T15:31:26Z-
dc.date.available2014-12-08T15:31:26Z-
dc.date.issued2013-06-01en_US
dc.identifier.issn0167-9236en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.dss.2013.02.009en_US
dc.identifier.urihttp://hdl.handle.net/11536/22331-
dc.description.abstractOnline business transactions and the success of e-commerce depend greatly on the effective design of a product recommender mechanism. This study proposes a social recommender system that can generate personalized product recommendations based on preference similarity, recommendation trust, and social relations. Compared with traditional collaborative filtering approaches, the advantage of the proposed mechanism is its comprehensive consideration of recommendation sources. Accordingly, our experimental results show that the proposed model outperforms other benchmark methodologies in terms of recommendation accuracy. The proposed framework can also be effectively applied to e-commerce retailers to promote their products and services. (C) 2013 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectE-commerceen_US
dc.subjectSocial recommender systemsen_US
dc.subjectPreference similarityen_US
dc.subjectTrusten_US
dc.subjectSocial relationen_US
dc.subjectAnalytic hierarchy processen_US
dc.titleA social recommender mechanism for e-commerce: Combining similarity, trust, and relationshipen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dss.2013.02.009en_US
dc.identifier.journalDECISION SUPPORT SYSTEMSen_US
dc.citation.volume55en_US
dc.citation.issue3en_US
dc.citation.spage740en_US
dc.citation.epage752en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000320638100009-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000320638100009.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。