完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Tsung-Mingen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorWu, Chin-Tienen_US
dc.date.accessioned2014-12-08T15:31:31Z-
dc.date.available2014-12-08T15:31:31Z-
dc.date.issued2013-06-01en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.amc.2013.03.120en_US
dc.identifier.urihttp://hdl.handle.net/11536/22352-
dc.description.abstractWe study the generalized eigenvalue problems (GEPs) that arise from modeling leaky surface wave propagation in an acoustic resonator with an infinite amount of periodically arranged interdigital transducers. The constitutive equations are discretized by finite element methods with mesh refinements along the electrode interfaces and corners. The non-zero eigenvalues of the resulting GEP appear in reciprocal pairs (lambda, 1/lambda). We transform the GEP into a T-palindromic quadratic eigenvalue problem (TPQEP) to reveal the important reciprocal relationships of the eigenvalues. The TPQEP is then solved by a structure-preserving algorithm incorporating a generalized T-skew-Hamiltonian implicitly restarted Arnoldi method so that the reciprocal relationship of the eigenvalues may be automatically preserved. Compared with applying the Arnoldi method to solve the GEPs, our numerical results show that the eigenpairs produced by the proposed structure-preserving method not only preserve the reciprocal property but also possess high efficiency and accuracy. (C) 2013 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectLeaky SAWen_US
dc.subjectStructure-preservingen_US
dc.subjectPalindromic quadratic eigenvalue problemen_US
dc.subjectGTSHIRAen_US
dc.subjectMesh refinementen_US
dc.titleStructure-preserving Arnoldi-type algorithm for solving eigenvalue problems in leaky surface wave propagationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2013.03.120en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume219en_US
dc.citation.issue19en_US
dc.citation.spage9947en_US
dc.citation.epage9958en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000319499500010-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000319499500010.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。