Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Tiexiangen_US
dc.contributor.authorWeng, Peter Chang-Yien_US
dc.contributor.authorChu, Eric King-wahen_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2014-12-08T15:32:02Z-
dc.date.available2014-12-08T15:32:02Z-
dc.date.issued2013-08-01en_US
dc.identifier.issn1017-1398en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11075-012-9650-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/22589-
dc.description.abstractWe consider the solution of large-scale Lyapunov and Stein equations. For Stein equations, the well-known Smith method will be adapted, with A(k) = A(2k) not explicitly computed but in the recursive form A(k) = A(k-1)(2), and the fast growing but diminishing components in the approximate solutions truncated. Lyapunov equations will be first treated with the Cayley transform before the Smith method is applied. For algebraic equations with numerically low-ranked solutions of dimension n, the resulting algorithms are of an efficient O(n) computational complexity and memory requirement per iteration and converge essentially quadratically. An application in the estimation of a lower bound of the condition number for continuous-time algebraic Riccati equations is presented, as well as some numerical results.en_US
dc.language.isoen_USen_US
dc.subjectKrylov subspaceen_US
dc.subjectLyapunov equationen_US
dc.subjectSmith methoden_US
dc.subjectStein equationen_US
dc.titleLarge-scale Stein and Lyapunov equations, Smith method, and applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11075-012-9650-2en_US
dc.identifier.journalNUMERICAL ALGORITHMSen_US
dc.citation.volume63en_US
dc.citation.issue4en_US
dc.citation.spage727en_US
dc.citation.epage752en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000323341900008-
dc.citation.woscount5-
Appears in Collections:Articles


Files in This Item:

  1. 000323341900008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.