完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiang, Yew-Wenen_US
dc.contributor.authorLin, Li-Gangen_US
dc.date.accessioned2014-12-08T15:32:22Z-
dc.date.available2014-12-08T15:32:22Z-
dc.date.issued2013-10-01en_US
dc.identifier.issn0005-1098en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.automatica.2013.07.026en_US
dc.identifier.urihttp://hdl.handle.net/11536/22734-
dc.description.abstractThe state-dependent Riccati equation (SORE) approach for stabilization of nonlinear affine systems was recently reported to be effective in many practical applications; however, there is no guideline on the construction of state-dependent coefficient (SDC) matrix when the SDRE solvability condition is violated, which may result in the SDRE scheme being terminated. In this study, we present several easy checking conditions so that the SORE scheme can be successfully implemented. Additionally, when the presented checking conditions are satisfied, the sets of all feasible SDC matrices and their structures are explicitly depicted for the planar system. (C) 2013 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectState-dependent Riccati equationen_US
dc.subjectNonlinear control systemen_US
dc.subjectStabilityen_US
dc.subjectState-dependent coefficient matrixen_US
dc.titleAnalysis of SDC matrices for successfully implementing the SDRE schemeen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.automatica.2013.07.026en_US
dc.identifier.journalAUTOMATICAen_US
dc.citation.volume49en_US
dc.citation.issue10en_US
dc.citation.spage3120en_US
dc.citation.epage3124en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000324447500022-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000324447500022.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。