完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Liang, Yew-Wen | en_US |
dc.contributor.author | Lin, Li-Gang | en_US |
dc.date.accessioned | 2014-12-08T15:32:22Z | - |
dc.date.available | 2014-12-08T15:32:22Z | - |
dc.date.issued | 2013-10-01 | en_US |
dc.identifier.issn | 0005-1098 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.automatica.2013.07.026 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/22734 | - |
dc.description.abstract | The state-dependent Riccati equation (SORE) approach for stabilization of nonlinear affine systems was recently reported to be effective in many practical applications; however, there is no guideline on the construction of state-dependent coefficient (SDC) matrix when the SDRE solvability condition is violated, which may result in the SDRE scheme being terminated. In this study, we present several easy checking conditions so that the SORE scheme can be successfully implemented. Additionally, when the presented checking conditions are satisfied, the sets of all feasible SDC matrices and their structures are explicitly depicted for the planar system. (C) 2013 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | State-dependent Riccati equation | en_US |
dc.subject | Nonlinear control system | en_US |
dc.subject | Stability | en_US |
dc.subject | State-dependent coefficient matrix | en_US |
dc.title | Analysis of SDC matrices for successfully implementing the SDRE scheme | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.automatica.2013.07.026 | en_US |
dc.identifier.journal | AUTOMATICA | en_US |
dc.citation.volume | 49 | en_US |
dc.citation.issue | 10 | en_US |
dc.citation.spage | 3120 | en_US |
dc.citation.epage | 3124 | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
dc.contributor.department | Institute of Electrical and Control Engineering | en_US |
dc.identifier.wosnumber | WOS:000324447500022 | - |
dc.citation.woscount | 1 | - |
顯示於類別: | 期刊論文 |