Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Chuan-Chingen_US
dc.contributor.authorLin, Chun-Yuanen_US
dc.contributor.authorChang, Cheng-Wenen_US
dc.contributor.authorTang, Chuan Yien_US
dc.date.accessioned2014-12-08T15:32:35Z-
dc.date.available2014-12-08T15:32:35Z-
dc.date.issued2013en_US
dc.identifier.issn2314-6133en_US
dc.identifier.urihttp://hdl.handle.net/11536/22808-
dc.identifier.urihttp://dx.doi.org/10.1155/2013/140237en_US
dc.description.abstractAn understanding of the activities of enzymes could help to elucidate the metabolic pathways of thousands of chemical reactions that are catalyzed by enzymes in living systems. Sophisticated applications such as drug design and metabolic reconstruction could be developed using accurate enzyme reaction annotation. Because accurate enzyme reaction annotation methods create potential for enhanced production capacity in these applications, they have received greater attention in the global market. We propose the enzyme reaction prediction (ERP) method as a novel tool to deduce enzyme reactions from domain architecture. We used several frequency relationships between architectures and reactions to enhance the annotation rates for single and multiple catalyzed reactions. The deluge of information which arose from high-throughput techniques in the postgenomic era has improved our understanding of biological data, although it presents obstacles in the data-processing stage. The high computational capacity provided by cloud computing has resulted in an exponential growth in the volume of incoming data. Cloud services also relieve the requirement for large-scale memory space required by this approach to analyze enzyme kinetic data. Our tool is designed as a single execution file; thus, it could be applied to any cloud platform in which multiple queries are supported.en_US
dc.language.isoen_USen_US
dc.titleEnzyme Reaction Annotation Using Cloud Techniquesen_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2013/140237en_US
dc.identifier.journalBIOMED RESEARCH INTERNATIONALen_US
dc.contributor.department應用化學系zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.identifier.wosnumberWOS:000325376800001-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000325376800001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.