標題: | AN EFFICIENT 3D MODEL RETRIEVAL BASED ON PRINCIPAL AXES ANALYSIS AND FEATURE INTEGRATION |
作者: | Lin, Sheng-Fuu Wu, Chin-Chia Hsu, Chi-Yao Hsu, Dou-Chih 電機工程學系 Department of Electrical and Computer Engineering |
關鍵字: | 3D model retrieval;continuous principal component analysis;Fourier descriptor;Zernike moment |
公開日期: | 1-六月-2011 |
摘要: | Three-dimensional (3D) model retrieval has gathered great importance in recent years, since the number of available 3D models on the Internet has drastically increased. Many content-based 3D model retrieval approaches have been proposed. Among these methods, visual similarity-based methods have shown higher retrieval accuracy. However, because these methods capture enormous shape features from different viewpoints or locations, a large amount of calculation and comparison is necessary. Furthermore, there is a trade-off between retrieval accuracy and speed. In this paper, a 3D model retrieval method constituting Continuous Principal Component Analysis (CPCA), Fourier descriptors, and Zernike moments is proposed. CPCA is applied to extract significant shape features based on projecting the model along the principal axes. Then, Fourier descriptors and Zernike moments are used to provide shape descriptors with rotation invariants. In addition, a feature integration process combines them. A strategy of similarity measure is proposed to solve the axes switching problem. To conclude, the experimental results show that the approach outperforms SECTORS(2) and D2,(18) and has slightly better retrieval results than Light Field Descriptor (LFD)(6) and spin-image signatures.(3) Moreover, the approach is more efficient and the storage size is much less. |
URI: | http://dx.doi.org/10.1142/S0218001411008749 http://hdl.handle.net/11536/22924 |
ISSN: | 0218-0014 |
DOI: | 10.1142/S0218001411008749 |
期刊: | INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE |
Volume: | 25 |
Issue: | 4 |
起始頁: | 583 |
結束頁: | 604 |
顯示於類別: | 期刊論文 |