Full metadata record
DC FieldValueLanguage
dc.contributor.authorLu, Y. C.en_US
dc.contributor.authorJan, J. C.en_US
dc.contributor.authorHung, S. L.en_US
dc.contributor.authorHung, G. H.en_US
dc.date.accessioned2014-12-08T15:33:02Z-
dc.date.available2014-12-08T15:33:02Z-
dc.date.issued2013-10-01en_US
dc.identifier.issn0305-215Xen_US
dc.identifier.urihttp://dx.doi.org/10.1080/0305215X.2012.729054en_US
dc.identifier.urihttp://hdl.handle.net/11536/23004-
dc.description.abstractThis work develops an augmented particle swarm optimization (AugPSO) algorithm using two new strategies,: boundary-shifting and particle-position-resetting. The purpose of the algorithm is to optimize the design of truss structures. Inspired by a heuristic, the boundary-shifting approach forces particles to move to the boundary between feasible and infeasible regions in order to increase the convergence rate in searching. The purpose of the particle-position-resetting approach, motivated by mutation scheme in genetic algorithms (GAs), is to increase the diversity of particles and to prevent the solution of particles from falling into local minima. The performance of the AugPSO algorithm was tested on four benchmark truss design problems involving 10, 25, 72 and 120 bars. The convergence rates and final solutions achieved were compared among the simple PSO, the PSO with passive congregation (PSOPC) and the AugPSO algorithms. The numerical results indicate that the new AugPSO algorithm outperforms the simple PSO and PSOPC algorithms. The AugPSO achieved a new and superior optimal solution to the 120-bar truss design problem. Numerical analyses showed that the AugPSO algorithm is more robust than the PSO and PSOPC algorithms.en_US
dc.language.isoen_USen_US
dc.subjecttruss structuresen_US
dc.subjectstochastic search methoden_US
dc.subjectoptimization designen_US
dc.subjectparticle swarm optimization (PSO)en_US
dc.titleEnhancing particle swarm optimization algorithm using two new strategies for optimizing design of truss structuresen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/0305215X.2012.729054en_US
dc.identifier.journalENGINEERING OPTIMIZATIONen_US
dc.citation.volume45en_US
dc.citation.issue10en_US
dc.citation.spage1251en_US
dc.citation.epage1271en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000324360100006-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000324360100006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.