Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Tsung-Mingen_US
dc.contributor.authorJia, Zhongxiaoen_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2014-12-08T15:33:29Z-
dc.date.available2014-12-08T15:33:29Z-
dc.date.issued2013-12-01en_US
dc.identifier.issn0006-3835en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10543-013-0438-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/23239-
dc.description.abstractFor a given subspace, the Rayleigh-Ritz method projects the large quadratic eigenvalue problem (QEP) onto it and produces a small sized dense QEP. Similar to the Rayleigh-Ritz method for the linear eigenvalue problem, the Rayleigh-Ritz method defines the Ritz values and the Ritz vectors of the QEP with respect to the projection subspace. We analyze the convergence of the method when the angle between the subspace and the desired eigenvector converges to zero. We prove that there is a Ritz value that converges to the desired eigenvalue unconditionally but the Ritz vector converges conditionally and may fail to converge. To remedy the drawback of possible non-convergence of the Ritz vector, we propose a refined Ritz vector that is mathematically different from the Ritz vector and is proved to converge unconditionally. We construct examples to illustrate our theory.en_US
dc.language.isoen_USen_US
dc.subjectRayleigh-Ritz methoden_US
dc.subjectRitz valueen_US
dc.subjectRitz vectoren_US
dc.subjectRefined Ritz vectoren_US
dc.subjectConvergenceen_US
dc.titleOn the convergence of Ritz pairs and refined Ritz vectors for quadratic eigenvalue problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10543-013-0438-0en_US
dc.identifier.journalBIT NUMERICAL MATHEMATICSen_US
dc.citation.volume53en_US
dc.citation.issue4en_US
dc.citation.spage941en_US
dc.citation.epage958en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000327125000008-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000327125000008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.