Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Tsaipeien_US
dc.date.accessioned2014-12-08T15:33:34Z-
dc.date.available2014-12-08T15:33:34Z-
dc.date.issued2011-06-01en_US
dc.identifier.issn1063-6706en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TFUZZ.2011.2105880en_US
dc.identifier.urihttp://hdl.handle.net/11536/23267-
dc.description.abstractThis paper presents the algorithms and experimental results for template-based shell clustering when the datasets are represented by line segments. Compared with point datasets, such representations have several advantages, which include better scalability and noise immunity, as well as the availability of orientation information. Using both synthetic and real-world image datasets, we have experimentally demonstrated that line-segment-based representations result in both better accuracy and better efficiency in shell clustering.en_US
dc.language.isoen_USen_US
dc.subjectLine-segment approximationen_US
dc.subjectline-segment matchingen_US
dc.subjectline-segment modelsen_US
dc.subjectpossibilistic c-means (PCMs)en_US
dc.subjectshell clusteringen_US
dc.subjecttemplate-based clusteringen_US
dc.subjecttemplate matchingen_US
dc.titleTemplate-Based Shell Clustering Using a Line-Segment Representation of Dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TFUZZ.2011.2105880en_US
dc.identifier.journalIEEE TRANSACTIONS ON FUZZY SYSTEMSen_US
dc.citation.volume19en_US
dc.citation.issue3en_US
dc.citation.spage575en_US
dc.citation.epage580en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000291317000014-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000291317000014.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.