完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Yong-Shengen_US
dc.contributor.authorChen, Li-Fenen_US
dc.contributor.authorWang, Yi-Tingen_US
dc.date.accessioned2014-12-08T15:33:48Z-
dc.date.available2014-12-08T15:33:48Z-
dc.date.issued2013en_US
dc.identifier.isbn978-0-8194-9305-7en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/23358-
dc.identifier.urihttp://dx.doi.org/10.1117/12.2031540en_US
dc.description.abstractThis paper presents a multiresolutional brain extraction framework which utilizes graph cuts technique to classify head magnetic resonance (MR) images into brain and non-brain regions. Starting with an over-extracted brain region, we refine the segmentation result by trimming non-brain regions in a coarse-to-fine manner. The extracted brain at the coarser level will be propagated to the finer level to estimate foreground/background seeds as constraints. The short-cut problem of graph cuts is reduced by the proposed pre-determined foreground from the coarser level. In order to consider the impact of the intensity inhomogeneities, we estimate the intensity distribution locally by partitioning volume images of each resolution into different numbers of smaller cubes. The graph cuts method is individually applied for each cube. Compared with four existing methods, the proposed method performs well in terms of sensitivity and specificity in our experiments for performance evaluation.en_US
dc.language.isoen_USen_US
dc.subjectMRIen_US
dc.subjectbrain extractionen_US
dc.subjectgraph cutsen_US
dc.titleMultiresolutional Graph Cuts for Brain Extraction from MR Imagesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1117/12.2031540en_US
dc.identifier.journalFIFTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2013)en_US
dc.citation.volume8878en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000328500600119-
顯示於類別:會議論文


文件中的檔案:

  1. 000328500600119.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。