完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHaas, Kevin R.en_US
dc.contributor.authorYang, Hawen_US
dc.contributor.authorChu, Jhih-Weien_US
dc.date.accessioned2014-12-08T15:34:03Z-
dc.date.available2014-12-08T15:34:03Z-
dc.date.issued2013-12-12en_US
dc.identifier.issn1520-6106en_US
dc.identifier.urihttp://dx.doi.org/10.1021/jp405983den_US
dc.identifier.urihttp://hdl.handle.net/11536/23415-
dc.description.abstractThe dynamics of a protein along a well-defined coordinate can be formally projected onto the form of an overdamped Lagevin equation. Here, we present a comprehensive statistical-learning framework for simultaneously quantifying the deterministic force (the potential of mean force, PMF) and the stochastic force (characterized by the diffusion coefficient, D) from single-molecule Forster-type resonance energy transfer (smFRET) experiments. The likelihood functional of the Langevin parameters, PMF and D, is expressed by a path integral of the latent smFRET distance that follows Langevin dynamics and realized by the donor and the acceptor photon emissions. The solution is made possible by an eigen decomposition of the time-symmetrized form of the corresponding Fokker-Planck equation coupled with photon statistics. To extract the Langevin parameters from photon arrival time data, we advance the expectation-maximization algorithm in statistical learning, originally developed for and mostly used in discrete-state systems, to a general form in the continuous space that allows for a variational calculus on the continuous PMF function. We also introduce the regularization of the solution space in this Bayesian inference based on a maximum trajectory-entropy principle. We use a highly nontrivial example with realistically simulated smFRET data to illustrate the application of this new method.en_US
dc.language.isoen_USen_US
dc.titleExpectation-Maximization of the Potential of Mean Force and Diffusion Coefficient in Langevin Dynamics from Single Molecule FRET Data Photon by Photonen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/jp405983den_US
dc.identifier.journalJOURNAL OF PHYSICAL CHEMISTRY Ben_US
dc.citation.volume117en_US
dc.citation.issue49en_US
dc.citation.spage15591en_US
dc.citation.epage15605en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000328529000036-
dc.citation.woscount5-
顯示於類別:期刊論文


文件中的檔案:

  1. 000328529000036.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。