Full metadata record
DC FieldValueLanguage
dc.contributor.authorTseng, Li-Chuanen_US
dc.contributor.authorChien, Feng-Tsunen_US
dc.contributor.authorZhang, Daqiangen_US
dc.contributor.authorChang, Ronald Y.en_US
dc.contributor.authorChung, Wei-Hoen_US
dc.contributor.authorHuang, ChingYaoen_US
dc.date.accessioned2014-12-08T15:34:05Z-
dc.date.available2014-12-08T15:34:05Z-
dc.date.issued2013-12-01en_US
dc.identifier.issn1089-7798en_US
dc.identifier.urihttp://dx.doi.org/10.1109/LCOMM.2013.102113.131876en_US
dc.identifier.urihttp://hdl.handle.net/11536/23430-
dc.description.abstractCoexistence of multiple radio access technologies (RATs) is a promising paradigm to improve spectral efficiency. This letter presents a game-theoretic network selection scheme in a cognitive heterogeneous networking environment with time-varying channel availability. We formulate the network selection problem as a noncooperative game with secondary users (SUs) as the players, and show that the game is an ordinal potential game (OPG). A decentralized, stochastic learning-based algorithm is proposed where each SU's strategy progressively evolves toward the Nash equilibrium (NE) based on its own action-reward history, without the need to know actions in other SUs. The convergence properties of the proposed algorithm toward an NE point are theoretically and numerically verified. The proposed algorithm demonstrates good throughput and fairness performances in various network scenarios.en_US
dc.language.isoen_USen_US
dc.subjectHeterogeneous networksen_US
dc.subjectcognitive radioen_US
dc.subjectself-organized network selectionen_US
dc.subjectstochastic learningen_US
dc.titleNetwork Selection in Cognitive Heterogeneous Networks Using Stochastic Learningen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LCOMM.2013.102113.131876en_US
dc.identifier.journalIEEE COMMUNICATIONS LETTERSen_US
dc.citation.volume17en_US
dc.citation.issue12en_US
dc.citation.spage2304en_US
dc.citation.epage2307en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000329528200025-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000329528200025.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.