完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, I-Hsinen_US
dc.contributor.authorLo, Yu-Shuen_US
dc.contributor.authorYang, Jinn-Moonen_US
dc.date.accessioned2014-12-08T15:34:15Z-
dc.date.available2014-12-08T15:34:15Z-
dc.date.issued2013-10-16en_US
dc.identifier.issn1471-2164en_US
dc.identifier.urihttp://dx.doi.org/10.1186/1471-2164-14-S5-S5en_US
dc.identifier.urihttp://hdl.handle.net/11536/23474-
dc.description.abstractBackground: The adaptive immune response is antigen-specific and triggered by pathogen recognition through T cells. Although the interactions and mechanisms of TCR-peptide-MHC (TCR-pMHC) have been studied over three decades, the biological basis for these processes remains controversial. As an increasing number of high-throughput binding epitopes and available TCR-pMHC complex structures, a fast genome-wide structural modelling of TCR-pMHC interactions is an emergent task for understanding immune interactions and developing peptide vaccines. Results: We first constructed the PPI matrices and iMatrix, using 621 non-redundant PPI interfaces and 398 non-redundant antigen-antibody interfaces, respectively, for modelling the MHC-peptide and TCR-peptide interfaces, respectively. The iMatrix consists of four knowledge-based scoring matrices to evaluate the hydrogen bonds and van der Waals forces between sidechains or backbones, respectively. The predicted energies of iMatrix are high correlated (Pearson's correlation coefficient is 0.6) to 70 experimental free energies on antigen-antibody interfaces. To further investigate iMatrix and PPI matrices, we inferred the 701,897 potential peptide antigens with significant statistic from 389 pathogen genomes and modelled the TCR-pMHC interactions using available TCR-pMHC complex structures. These identified peptide antigens keep hydrogen-bond energies and consensus interactions and our TCR-pMHC models can provide detailed interacting models and crucial binding regions. Conclusions: Experimental results demonstrate that our method can achieve high precision for predicting binding affinity and potential peptide antigens. We believe that iMatrix and our template-based method can be useful for the binding mechanisms of TCR-pMHC complexes and peptide vaccine designs.en_US
dc.language.isoen_USen_US
dc.titleGenome-wide structural modelling of TCR-pMHC interactionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/1471-2164-14-S5-S5en_US
dc.identifier.journalBMC GENOMICSen_US
dc.citation.volume14en_US
dc.citation.issueen_US
dc.citation.epageen_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000329440600004-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000329440600004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。