完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTrappey, Charlesen_US
dc.contributor.authorWu, Hsin-Yingen_US
dc.contributor.authorLiu, Kuan-Liangen_US
dc.contributor.authorLin, Feng-Tengen_US
dc.date.accessioned2014-12-08T15:34:20Z-
dc.date.available2014-12-08T15:34:20Z-
dc.date.issued2013en_US
dc.identifier.isbn978-0-7695-5111-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/23520-
dc.identifier.urihttp://dx.doi.org/10.1109/ICEBE.2013.40en_US
dc.description.abstractText mining of consumer's dialogues regarding their service experiences provides a direct and unbiased feedback to service providers. This research proposes an analysis process to analyze unstructured input from consumer dialogues. The goal is to apply the critical incident and text mining methods to discover factors that contribute to customer satisfaction and dissatisfaction. The critical incident method is used to construct an open-ended questionnaire to collect customer's positive and negative opinions toward the service provided. Valid and reliable text mining techniques are used to cluster significant text to help analyze incidents that customers care about. A case study of consumers riding the Kaohsiung Mass Rapid Transit System (KMRT) was cased to evaluate the proposed analysis process. Based on dialogues collected from the open-ended questionnaires, the analysis process extracts key phrases related to consumer's best and worst service experiences, creates significant dialogue clusters, and derives meaningful trends, baselines, and interpretations of consumer satisfaction and dissatisfaction. The results of this case study can be used as a basis for building more complete analytical methods to understand consumer experiences and provide strategic feedback for service providers.en_US
dc.language.isoen_USen_US
dc.subjectcustomer satisfactionen_US
dc.subjectcritical incident techniquesen_US
dc.subjecttext miningen_US
dc.subjectcluster analysisen_US
dc.subjectCKIPen_US
dc.subjectKMRTen_US
dc.titleKnowledge Discovery of Service Satisfaction Based on Text Analysis of Critical Incident Dialogues and Clustering Methodsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ICEBE.2013.40en_US
dc.identifier.journal2013 IEEE 10TH INTERNATIONAL CONFERENCE ON E-BUSINESS ENGINEERING (ICEBE)en_US
dc.citation.spage265en_US
dc.citation.epage270en_US
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000330341500040-
顯示於類別:會議論文


文件中的檔案:

  1. 000330341500040.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。