完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChuang, Yi-Taen_US
dc.contributor.authorYi, Chih-Weien_US
dc.contributor.authorLu, Yin-Chihen_US
dc.contributor.authorTsai, Pei-Chuanen_US
dc.date.accessioned2014-12-08T15:34:21Z-
dc.date.available2014-12-08T15:34:21Z-
dc.date.issued2013en_US
dc.identifier.isbn978-0-7695-5117-3en_US
dc.identifier.issn0190-3918en_US
dc.identifier.urihttp://hdl.handle.net/11536/23526-
dc.identifier.urihttp://dx.doi.org/10.1109/ICPP.2013.109en_US
dc.description.abstractWe propose the i-Traffic system that utilizes crowdsourced data from smartphones for the traffic flow mining by shockwave techniques. Shockwave is the propagation phenomenon of vehicle accumulation or relief on roads between two traffic flows with different speeds. The movement data of vehicles in front of an intersection are collected via smartphones for the shockwave identification. To conquer the low penetration problem when the number of the movement data is low, a folding heuristic is proposed by using traffic light cycle information to virtually increase the penetration of movement data. We implement our system on a client-server architecture and perform a small scale field trial experiment to demonstrate the system capability. Our results showed that our system is able to compute traffic information, including red/green light transition information and vehicle arrival rate with mean absolute errors of 5.0/0.6 seconds and 2.43 vehicles per minute, respectively under a low penetration rate of 1.2%.en_US
dc.language.isoen_USen_US
dc.subjectCrowdsourcingen_US
dc.subjectgreen computingen_US
dc.subjectintelligent transportationen_US
dc.subjectlocation-based serviceen_US
dc.titleiTraffic: A Smartphone-based Traffic Information Systemen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ICPP.2013.109en_US
dc.identifier.journal2013 42ND ANNUAL INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP)en_US
dc.citation.spage917en_US
dc.citation.epage922en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000330046000097-
顯示於類別:會議論文


文件中的檔案:

  1. 000330046000097.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。