完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Tai-Beenen_US
dc.contributor.authorLu, Henry Horng-Shingen_US
dc.contributor.authorKim, Hang-Keunen_US
dc.contributor.authorSon, Young-Donen_US
dc.contributor.authorCho, Zang-Heeen_US
dc.date.accessioned2014-12-08T15:34:26Z-
dc.date.available2014-12-08T15:34:26Z-
dc.date.issued2014-03-01en_US
dc.identifier.issn0969-806Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.radphyschem.2013.09.006en_US
dc.identifier.urihttp://hdl.handle.net/11536/23571-
dc.description.abstractState-of-the-art high resolution research tomography (HRRT) provides high resolution PET images with full 3D human brain scanning. But, a short time frame in dynamic study causes many problems related to the low counts in the acquired data. The PDS-OSEM algorithm was proposed to reconstruct the HRRT image with a high signal-to-noise ratio that provides accurate information for dynamic data. The new algorithm was evaluated by simulated image, empirical phantoms, and real human brain data. Meanwhile, the time activity curve was adopted to validate a reconstructed performance of dynamic data between PDS-OSEM and OP-OSEM algorithms. According to simulated and empirical studies, the PDS-OSEM algorithm reconstructs images with higher quality, higher accuracy, less noise, and less average sum of square error than those of OP-OSEM. The presented algorithm is useful to provide quality images under the condition of low count rates in dynamic studies with a short scan time. (C) 2013 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHARTen_US
dc.subjectPETen_US
dc.subjectOP-OSEMen_US
dc.subjectPDS-OSEMen_US
dc.subjectTime Activity Curveen_US
dc.subjectAverage Sum of Square Erroren_US
dc.titleAccurate 3D reconstruction by a new PDS-OSEM algorithm for HRRTen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.radphyschem.2013.09.006en_US
dc.identifier.journalRADIATION PHYSICS AND CHEMISTRYen_US
dc.citation.volume96en_US
dc.citation.issueen_US
dc.citation.spage107en_US
dc.citation.epage114en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000330157400018-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000330157400018.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。