完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKung, Tzu-Liangen_US
dc.contributor.authorLin, Cheng-Kuanen_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:34:28Z-
dc.date.available2014-12-08T15:34:28Z-
dc.date.issued2014-02-01en_US
dc.identifier.issn1382-6905en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10878-012-9528-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/23581-
dc.description.abstractHsieh and Yu (2007) first claimed that an injured n-dimensional hypercube Q (n) contains (n-1-f)-mutually independent fault-free Hamiltonian cycles, where fa parts per thousand currency signn-2 denotes the total number of permanent edge-faults in Q (n) for na parts per thousand yen4, and edge-faults can occur everywhere at random. Later, Kueng et al. (2009a) presented a formal proof to validate Hsieh and Yu's argument. This paper aims to improve this mentioned result by showing that up to (n-f)-mutually independent fault-free Hamiltonian cycles can be embedded under the same condition. Let F denote the set of f faulty edges. If all faulty edges happen to be incident with an identical vertex s, i.e., the minimum degree of the survival graph Q (n) -F is equal to n-f, then Q (n) -F contains at most (n-f)-mutually independent Hamiltonian cycles starting from s. From such a point of view, the presented result is optimal. Thus, not only does our improvement increase the number of mutually independent fault-free Hamiltonian cycles by one, but also the optimality can be achieved.en_US
dc.language.isoen_USen_US
dc.subjectInterconnection networken_US
dc.subjectGraphen_US
dc.subjectHypercubeen_US
dc.subjectFault toleranceen_US
dc.subjectHamiltonian cycleen_US
dc.titleOn the maximum number of fault-free mutually independent Hamiltonian cycles in the faulty hypercubeen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10878-012-9528-1en_US
dc.identifier.journalJOURNAL OF COMBINATORIAL OPTIMIZATIONen_US
dc.citation.volume27en_US
dc.citation.issue2en_US
dc.citation.spage328en_US
dc.citation.epage344en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000330590400009-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000330590400009.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。