完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWang, Kuo-Zhongen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:34:38Z-
dc.date.available2014-12-08T15:34:38Z-
dc.date.issued2014-01-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2013.10.041en_US
dc.identifier.urihttp://hdl.handle.net/11536/23639-
dc.description.abstractFor an n-by-n complex matrix A, we define its zero-dilation index d(A) as the largest size of a zero matrix which can he dilated to A. This is the same as the maximum k (>= 1) for which 0 is in the rank-k numerical range of A. Using a result of Li and Sze, we show that if d(A) > left perpendicular2n/3right perpendicular, then, under unitary similarity, A has the zero matrix of size 3d(A) - 2n as a direct summand. It complements the known fact that if d(A) > left perpendicularn/2right perpendicular, then 0 is an eigenvalue of A. We then use it to give a complete characterization of n-by-n matrices A with d(A) = n - 1, namely, A satisfies this condition if and only if it is unitarily similar to B circle times 0(n-3), where B is a 3-by-3 matrix whose numerical range W (B) is an elliptic disc and whose eigenvalue other than the two foci of partial derivative W (B) is 0. We also determine the value of d(A) for any normal matrix A and any weighted permutation matrix A with zero diagonals. (C)2013 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectZero-dilation indexen_US
dc.subjectHigher-rank numerical rangeen_US
dc.subjectNormal matrixen_US
dc.subjectWeighted permutation matrixen_US
dc.titleZero-dilation index of a finite matrixen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2013.10.041en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume440en_US
dc.citation.issueen_US
dc.citation.spage111en_US
dc.citation.epage124en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000329557700008-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000329557700008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。