完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | CHENG, CJ | en_US |
dc.contributor.author | YEH, PC | en_US |
dc.contributor.author | HSU, KY | en_US |
dc.date.accessioned | 2014-12-08T15:03:50Z | - |
dc.date.available | 2014-12-08T15:03:50Z | - |
dc.date.issued | 1994-09-01 | en_US |
dc.identifier.issn | 0740-3224 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1364/JOSAB.11.001619 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/2363 | - |
dc.description.abstract | We consider the properties of a generalized perceptron learning network, taking into account the decay or the gain of the weight vector during the training stages. A mathematical proof is given that shows the conditional convergence of the learning algorithm. The analytical result indicates that the upper bound of the training steps is dependent on the gain (or decay) factor. A sufficient condition of exposure time for convergence of a photorefractive perceptron network is derived. We also describe a modified learning algorithm that provides a solution to the problem of weight vector decay in an optical perceptron caused by hologram erasure. Both analytical and simulation results are presented and discussed. | en_US |
dc.language.iso | en_US | en_US |
dc.title | GENERALIZED PERCEPTRON LEARNING RULE AND ITS IMPLICATIONS FOR PHOTOREFRACTIVE NEURAL NETWORKS | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1364/JOSAB.11.001619 | en_US |
dc.identifier.journal | JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS | en_US |
dc.citation.volume | 11 | en_US |
dc.citation.issue | 9 | en_US |
dc.citation.spage | 1619 | en_US |
dc.citation.epage | 1624 | en_US |
dc.contributor.department | 交大名義發表 | zh_TW |
dc.contributor.department | 光電工程學系 | zh_TW |
dc.contributor.department | National Chiao Tung University | en_US |
dc.contributor.department | Department of Photonics | en_US |
dc.identifier.wosnumber | WOS:A1994PE85300011 | - |
dc.citation.woscount | 1 | - |
顯示於類別: | 期刊論文 |