標題: Friendship Prediction on Social Network Users
作者: Chen, Kuan-Hsi
Liang, Tyne
資訊工程學系
Department of Computer Science
關鍵字: social network;link prediction;friendship;interaction
公開日期: 2013
摘要: Undoubtedly friendship is one of key factors which keep social networking service users active and the whole community expanding. Hence, predicting friendships becomes an indispensable service provided by the platforms like Plurk, Twitter and Facebook. In this study, an empirical prediction resolution is presented by taking into account the interactions among Plurk users in Taiwan. Both response links and content information extracted from the interaction corpus are used as features in the implementation of the vector space machine based prediction. Experimental results show that the presented approach outperforms those bag-of-word based methods presented in previous studies.
URI: http://hdl.handle.net/11536/23697
http://dx.doi.org/10.1109/SocialCom.2013.59
ISBN: 978-0-7695-5137-1
DOI: 10.1109/SocialCom.2013.59
期刊: 2013 ASE/IEEE INTERNATIONAL CONFERENCE ON SOCIAL COMPUTING (SOCIALCOM)
起始頁: 379
結束頁: 384
顯示於類別:會議論文


文件中的檔案:

  1. 000330563800054.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。