完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Fei-Huangen_US
dc.contributor.authorChen, Hong-Binen_US
dc.contributor.authorHwang, Frank K.en_US
dc.date.accessioned2014-12-08T15:34:55Z-
dc.date.available2014-12-08T15:34:55Z-
dc.date.issued2014-04-01en_US
dc.identifier.issn1382-6905en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10878-012-9536-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/23748-
dc.description.abstractA partition of a set of n points in d-dimensional space into p parts is called an (almost) separable partition if the convex hulls formed by the parts are (almost) pairwise disjoint. These two partition classes are the most encountered ones in clustering and other partition problems for high-dimensional points and their usefulness depends critically on the issue whether their numbers are small. The problem of bounding separable partitions has been well studied in the literature (Alon and Onn in Discrete Appl. Math. 91:39-51, 1999; Barnes et al. in Math. Program. 54:69-86, 1992; Harding in Proc. Edinb. Math. Soc. 15:285-289, 1967; Hwang et al. in SIAM J. Optim. 10:70-81, 1999; Hwang and Rothblum in J. Comb. Optim. 21:423-433, 2011a). In this paper, we prove that for da parts per thousand currency sign2 or pa parts per thousand currency sign2, the maximum number of almost separable partitions is equal to the maximum number of separable partitions.en_US
dc.language.isoen_USen_US
dc.subjectPartitionen_US
dc.subjectSeparable partitionen_US
dc.subjectOptimal partitionen_US
dc.subjectAlmost separable partitionen_US
dc.titleAre there more almost separable partitions than separable partitions?en_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10878-012-9536-1en_US
dc.identifier.journalJOURNAL OF COMBINATORIAL OPTIMIZATIONen_US
dc.citation.volume27en_US
dc.citation.issue3en_US
dc.citation.spage567en_US
dc.citation.epage573en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000332006100012-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000332006100012.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。