完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKuo, Hung-Juen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorWang, Chia-Tinen_US
dc.date.accessioned2014-12-08T15:34:58Z-
dc.date.available2014-12-08T15:34:58Z-
dc.date.issued2014-03-01en_US
dc.identifier.issn0749-159Xen_US
dc.identifier.urihttp://dx.doi.org/10.1002/num.21814en_US
dc.identifier.urihttp://hdl.handle.net/11536/23775-
dc.description.abstractWe use higher dimensional B-splines as basis functions to find the approximations for the Dirichlet problem of the Poisson equation in dimension two and three. We utilize the boundary data to remove unnecessary bases. Our method is applicable to more general linear partial differential equations. We provide new basis functions which do not require as many B-splines. The number of new bases coincides with that of the necessary knots. The reducing process uses the boundary conditions to redefine a basis without extra artificial assumptions on knots which are outside the domain. Therefore, more accuracy would be expected from our method. The approximation solutions satisfy the Poisson equation at each mesh point and are solved explicitly using tensor product of matrices. (c) 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 393-405, 2014en_US
dc.language.isoen_USen_US
dc.subjectB-splineen_US
dc.subjectdivided differenceen_US
dc.subjectapproximationen_US
dc.subjectnumerical experimenten_US
dc.titleNew Solvers for Higher Dimensional Poisson Equations by Reduced B-Splinesen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/num.21814en_US
dc.identifier.journalNUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONSen_US
dc.citation.volume30en_US
dc.citation.issue2en_US
dc.citation.spage393en_US
dc.citation.epage405en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000331171400003-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000331171400003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。