Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Hsuan-Shengen_US
dc.contributor.authorTsai, Wen-Jiinen_US
dc.date.accessioned2014-12-08T15:35:04Z-
dc.date.available2014-12-08T15:35:04Z-
dc.date.issued2014-02-01en_US
dc.identifier.issn1047-3203en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jvcir.2013.12.001en_US
dc.identifier.urihttp://hdl.handle.net/11536/23804-
dc.description.abstractSemantic high-level event recognition of videos is one of most interesting issues for multimedia searching and indexing. Since low-level features are semantically distinct from high-level events, a hierarchical video analysis framework is needed, i.e., using mid-level features to provide clear linkages between low-level audio-visual features and high-level semantics. Therefore, this paper presents a framework for video event classification using temporal context of mid-level interval-based multimodal features. In the framework, a co-occurrence symbol transformation method is proposed to explore full temporal relations among multiple modalities in probabilistic HMM event classification. The results of our experiments on baseball video event classification demonstrate the superiority of the proposed approach. (C) 2013 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectMultimedia systemen_US
dc.subjectVideo semantic analysisen_US
dc.subjectBaseball event classificationen_US
dc.subjectCo-occurrence symbolen_US
dc.subjectInterval-based multimodal featureen_US
dc.subjectHMMen_US
dc.subjectProbabilistic temporal modelingen_US
dc.subjectMultivariate temporal data classificationen_US
dc.titleA framework for video event classification by modeling temporal context of multimodal features using HMMen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jvcir.2013.12.001en_US
dc.identifier.journalJOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATIONen_US
dc.citation.volume25en_US
dc.citation.issue2en_US
dc.citation.spage285en_US
dc.citation.epage295en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000331679300005-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000331679300005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.