Full metadata record
DC FieldValueLanguage
dc.contributor.authorHo, C. -L.en_US
dc.contributor.authorLee, J. -C.en_US
dc.contributor.authorSasaki, R.en_US
dc.date.accessioned2014-12-08T15:35:19Z-
dc.date.available2014-12-08T15:35:19Z-
dc.date.issued2014-04-01en_US
dc.identifier.issn0003-4916en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.aop.2014.01.015en_US
dc.identifier.urihttp://hdl.handle.net/11536/23945-
dc.description.abstractNew solvable one-dimensional quantum mechanical scattering problems are presented. They are obtained from known solvable potentials by multiple Darboux transformations in terms of virtual and pseudo virtual wavefunctions. The same method applied to confining potentials, e.g. Poschl-Teller and the radial oscillator potentials, has generated the multi-indexed Jacobi and Laguerre polynomials. Simple multi-indexed formulas are derived for the transmission and reflection amplitudes of several solvable potentials. (C) 2014 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectMulti-indexed solvable potentialen_US
dc.subjectMultiple Darboux transformationen_US
dc.subjectScattering amplitudeen_US
dc.subjectShape invarianceen_US
dc.titleScattering amplitudes for multi-indexed extensions of solvable potentialsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.aop.2014.01.015en_US
dc.identifier.journalANNALS OF PHYSICSen_US
dc.citation.volume343en_US
dc.citation.issueen_US
dc.citation.spage115en_US
dc.citation.epage131en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000333544700010-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000333544700010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.