完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFuchs, Michaelen_US
dc.contributor.authorLee, Chung-Kueien_US
dc.date.accessioned2014-12-08T15:35:24Z-
dc.date.available2014-12-08T15:35:24Z-
dc.date.issued2014-03-24en_US
dc.identifier.issn1077-8926en_US
dc.identifier.urihttp://hdl.handle.net/11536/23971-
dc.description.abstractTries and PATRICIA tries are fundamental data structures in computer science with numerous applications. In a recent paper, a general framework for obtaining the mean and variance of additive shape parameters of tries and PATRICIA tries under the Bernoulli model was proposed. In this note, we show that a slight modification of this framework yields a central limit theorem for shape parameters, too. This central limit theorem contains many of the previous central limit theorems from the literature and it can be used to prove recent conjectures and derive new results. As an example, we will consider a refinement of the size of tries and PATRICIA tries, namely, the number of nodes of fixed outdegree and obtain (univariate and bivariate) central limit theorems. Moreover, trivariate central limit theorems for size, internal path length and internal Wiener index of tries and PATRICIA tries are derived as well.en_US
dc.language.isoen_USen_US
dc.subjectTriesen_US
dc.subjectnodes of fixed out-degreeen_US
dc.subjecttotal path lengthen_US
dc.subjectWiener indexen_US
dc.subjectmomentsen_US
dc.subjectmultivariate central limit theoremsen_US
dc.titleA General Central Limit Theorem for Shape Parameters of m-ary Tries and PATRICIA Triesen_US
dc.typeArticleen_US
dc.identifier.journalELECTRONIC JOURNAL OF COMBINATORICSen_US
dc.citation.volume21en_US
dc.citation.issue1en_US
dc.citation.epageen_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000333406600005-
dc.citation.woscount0-
顯示於類別:期刊論文