完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChien, Jen-Tzungen_US
dc.contributor.authorChang, Ying-Lanen_US
dc.date.accessioned2014-12-08T15:35:27Z-
dc.date.available2014-12-08T15:35:27Z-
dc.date.issued2014-03-01en_US
dc.identifier.issn1939-8018en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11265-013-0759-xen_US
dc.identifier.urihttp://hdl.handle.net/11536/24002-
dc.description.abstractThis paper presents a new Bayesian sparse learning approach to select salient lexical features for sparse topic modeling. The Bayesian learning based on latent Dirichlet allocation (LDA) is performed by incorporating the spike-and-slab priors. According to this sparse LDA (sLDA), the spike distribution is used to select salient words while the slab distribution is applied to establish the latent topic model based on those selected relevant words. The variational inference procedure is developed to estimate prior parameters for sLDA. In the experiments on document modeling using LDA and sLDA, we find that the proposed sLDA does not only reduce the model perplexity but also reduce the memory and computation costs. Bayesian feature selection method does effectively identify relevant topic words for building sparse topic model.en_US
dc.language.isoen_USen_US
dc.subjectBayesian sparse learningen_US
dc.subjectFeature selectionen_US
dc.subjectTopic modelen_US
dc.titleBayesian Sparse Topic Modelen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11265-013-0759-xen_US
dc.identifier.journalJOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGYen_US
dc.citation.volume74en_US
dc.citation.issue3en_US
dc.citation.spage375en_US
dc.citation.epage389en_US
dc.contributor.department電機資訊學士班zh_TW
dc.contributor.departmentUndergraduate Honors Program of Electrical Engineering and Computer Scienceen_US
dc.identifier.wosnumberWOS:000333206500008-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000333206500008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。