Full metadata record
DC FieldValueLanguage
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWang, Kuo-Zhongen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:35:28Z-
dc.date.available2014-12-08T15:35:28Z-
dc.date.issued2014-03-01en_US
dc.identifier.issn0378-620Xen_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00020-013-2098-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/24013-
dc.description.abstractFor bounded linear operators A and B on Hilbert spaces H and K, respectively, it is known that the numerical radii of A, B and are related by the inequalities . In this paper, we show that (1) if , then w(A) = rho(A) or w(B) = rho(B), where rho(center dot) denotes the spectral radius of an operator, and (2) if A is hyponormal, then . Here (2) confirms a conjecture of Shiu's and is proven via dilating the hyponormal A to a normal operator N with the spectrum of N contained in that of A. The latter is obtained from the Sz.-Nagy-FoiaAY dilation theory.en_US
dc.language.isoen_USen_US
dc.subjectNumerical rangeen_US
dc.subjectnumerical radiusen_US
dc.subjecttensor producten_US
dc.subjecthyponormal operatoren_US
dc.titleNumerical Radii for Tensor Products of Operatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00020-013-2098-5en_US
dc.identifier.journalINTEGRAL EQUATIONS AND OPERATOR THEORYen_US
dc.citation.volume78en_US
dc.citation.issue3en_US
dc.citation.spage375en_US
dc.citation.epage382en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000332581500003-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000332581500003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.