Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gau, Hwa-Long | en_US |
dc.contributor.author | Wang, Kuo-Zhong | en_US |
dc.contributor.author | Wu, Pei Yuan | en_US |
dc.date.accessioned | 2014-12-08T15:35:28Z | - |
dc.date.available | 2014-12-08T15:35:28Z | - |
dc.date.issued | 2014-03-01 | en_US |
dc.identifier.issn | 0378-620X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s00020-013-2098-5 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/24013 | - |
dc.description.abstract | For bounded linear operators A and B on Hilbert spaces H and K, respectively, it is known that the numerical radii of A, B and are related by the inequalities . In this paper, we show that (1) if , then w(A) = rho(A) or w(B) = rho(B), where rho(center dot) denotes the spectral radius of an operator, and (2) if A is hyponormal, then . Here (2) confirms a conjecture of Shiu's and is proven via dilating the hyponormal A to a normal operator N with the spectrum of N contained in that of A. The latter is obtained from the Sz.-Nagy-FoiaAY dilation theory. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Numerical range | en_US |
dc.subject | numerical radius | en_US |
dc.subject | tensor product | en_US |
dc.subject | hyponormal operator | en_US |
dc.title | Numerical Radii for Tensor Products of Operators | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00020-013-2098-5 | en_US |
dc.identifier.journal | INTEGRAL EQUATIONS AND OPERATOR THEORY | en_US |
dc.citation.volume | 78 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 375 | en_US |
dc.citation.epage | 382 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000332581500003 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.