Full metadata record
DC FieldValueLanguage
dc.contributor.authorTuan, P. H.en_US
dc.contributor.authorWen, C. P.en_US
dc.contributor.authorYu, Y. T.en_US
dc.contributor.authorLiang, H. C.en_US
dc.contributor.authorHuang, K. F.en_US
dc.contributor.authorChen, Y. F.en_US
dc.date.accessioned2019-04-03T06:43:51Z-
dc.date.available2019-04-03T06:43:51Z-
dc.date.issued2014-02-12en_US
dc.identifier.issn1539-3755en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevE.89.022911en_US
dc.identifier.urihttp://hdl.handle.net/11536/24033-
dc.description.abstractExperimentally resonant modes are commonly presumed to correspond to eigenmodes in the same bounded domain. However, the one-to-one correspondence between theoretical eigenmodes and experimental observations is never reached. Theoretically, eigenmodes in numerous classical and quantum systems are the solutions of the homogeneous Helmholtz equation, whereas resonant modes should be solved from the inhomogeneous Helmholtz equation. In the present paper we employ the eigenmode expansion method to derive the wave functions for manifesting the distinction between eigenmodes and resonant modes. The derived wave functions are successfully used to reconstruct a variety of experimental results including Chladni figures generated from the vibrating plate, resonant patterns excited from microwave cavities, and lasing modes emitted from the vertical cavity.en_US
dc.language.isoen_USen_US
dc.titleExploring the distinction between experimental resonant modes and theoretical eigenmodes: From vibrating plates to laser cavitiesen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevE.89.022911en_US
dc.identifier.journalPHYSICAL REVIEW Een_US
dc.citation.volume89en_US
dc.citation.issue2en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000332177100005en_US
dc.citation.woscount3en_US
Appears in Collections:Articles


Files in This Item:

  1. 4ce33975c38d96123b84a40a223b1602.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.