Full metadata record
DC FieldValueLanguage
dc.contributor.authorPan, JJen_US
dc.contributor.authorChang, GJen_US
dc.date.accessioned2014-12-08T15:35:40Z-
dc.date.available2014-12-08T15:35:40Z-
dc.date.issued2005-01-30en_US
dc.identifier.issn0166-218Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.dam.2004.03.006en_US
dc.identifier.urihttp://hdl.handle.net/11536/24074-
dc.description.abstractThe path-partition problem is to find a minimum number of vertex-disjoint paths that cover all vertices of a given graph. This paper studies the path-partition problem from an algorithmic point of view. As the Hamiltonian path problem is NP-complete for many classes of graphs, so is the path-partition problem. The main result of this paper is to present a linear-time algorithm for the path-partition problem in graphs whose blocks are complete graphs, cycles or complete bipartite graphs. (C) 2004 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectpath partitionen_US
dc.subjectblocken_US
dc.subjectcomplete graphen_US
dc.subjectcycleen_US
dc.subjectcomplete bipartite graphen_US
dc.subjectalgorithmen_US
dc.titlePath partition for graphs with special blocksen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dam.2004.03.006en_US
dc.identifier.journalDISCRETE APPLIED MATHEMATICSen_US
dc.citation.volume145en_US
dc.citation.issue3en_US
dc.citation.spage429en_US
dc.citation.epage436en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000226452800010-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000226452800010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.