Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pan, JJ | en_US |
dc.contributor.author | Chang, GJ | en_US |
dc.date.accessioned | 2014-12-08T15:35:40Z | - |
dc.date.available | 2014-12-08T15:35:40Z | - |
dc.date.issued | 2005-01-30 | en_US |
dc.identifier.issn | 0166-218X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.dam.2004.03.006 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/24074 | - |
dc.description.abstract | The path-partition problem is to find a minimum number of vertex-disjoint paths that cover all vertices of a given graph. This paper studies the path-partition problem from an algorithmic point of view. As the Hamiltonian path problem is NP-complete for many classes of graphs, so is the path-partition problem. The main result of this paper is to present a linear-time algorithm for the path-partition problem in graphs whose blocks are complete graphs, cycles or complete bipartite graphs. (C) 2004 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | path partition | en_US |
dc.subject | block | en_US |
dc.subject | complete graph | en_US |
dc.subject | cycle | en_US |
dc.subject | complete bipartite graph | en_US |
dc.subject | algorithm | en_US |
dc.title | Path partition for graphs with special blocks | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.dam.2004.03.006 | en_US |
dc.identifier.journal | DISCRETE APPLIED MATHEMATICS | en_US |
dc.citation.volume | 145 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 429 | en_US |
dc.citation.epage | 436 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000226452800010 | - |
dc.citation.woscount | 1 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.