Full metadata record
DC FieldValueLanguage
dc.contributor.authorCHEN, JLen_US
dc.contributor.authorYANG, TJen_US
dc.date.accessioned2019-04-03T06:39:09Z-
dc.date.available2019-04-03T06:39:09Z-
dc.date.issued1994-07-01en_US
dc.identifier.issn1098-0121en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevB.50.319en_US
dc.identifier.urihttp://hdl.handle.net/11536/2415-
dc.description.abstractThe theory of flux flow developed by Bardeen and Stephen (BS) is modified and extended to the high-field case. The Clem model and Wigner-Seitz circle-cell approximation for vortices are used in our approach. The distinct boundary of the normal core of a vortex in BS theory is removed and treated naturally. Several interesting results come out as a consequence. The Lorentz force is determined by the normal current rather than the supercurrent. But the supercurrent can sustain the magnetic-field distribution of flux quanta. From energy dissipation considerations, the Lorentz force is equal to viscosity force automatically without assumption as made in BS theory. An expression for the viscosity is also obtained.en_US
dc.language.isoen_USen_US
dc.titleFLUX-FLOW OF ABRIKOSOV VORTICES IN TYPE-II SUPERCONDUCTORSen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevB.50.319en_US
dc.identifier.journalPHYSICAL REVIEW Ben_US
dc.citation.volume50en_US
dc.citation.issue1en_US
dc.citation.spage319en_US
dc.citation.epage322en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.department光電工程研究所zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.contributor.departmentInstitute of EO Enginerringen_US
dc.identifier.wosnumberWOS:A1994NX87100039en_US
dc.citation.woscount1en_US
Appears in Collections:Articles


Files in This Item:

  1. 7db4b48f6c6c5fb294714e6b425d5e13.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.