Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Chi-Kunen_US
dc.contributor.authorSegata, Jun-ichien_US
dc.date.accessioned2014-12-08T15:35:48Z-
dc.date.available2014-12-08T15:35:48Z-
dc.date.issued2014-06-01en_US
dc.identifier.issn0022-0396en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jde.2014.03.001en_US
dc.identifier.urihttp://hdl.handle.net/11536/24185-
dc.description.abstractWe consider the behavior of solutions to the water wave interaction equations in the limit epsilon -> 0(+). To justify the semiclassical approximation, we reduce the water wave interaction equation into some hyperbolic-dispersive system by using a modified Madelung transform. The reduced system causes loss of derivatives which prevents us to apply the classical energy method to prove the existence of solution. To overcome this difficulty we introduce a modified energy method and construct the solution to the reduced system. (c) 2014 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectZero dispersion limiten_US
dc.subjectWKB analysisen_US
dc.subjectSystem of dispersive equationsen_US
dc.subjectWell-posednessen_US
dc.titleWKB analysis of the Schrodinger-KdV systemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jde.2014.03.001en_US
dc.identifier.journalJOURNAL OF DIFFERENTIAL EQUATIONSen_US
dc.citation.volume256en_US
dc.citation.issue11en_US
dc.citation.spage3817en_US
dc.citation.epage3834en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.department數學建模與科學計算所(含中心)zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.contributor.departmentGraduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000334727000013-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000334727000013.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.