完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Lin, Chi-Kun | en_US |
dc.contributor.author | Segata, Jun-ichi | en_US |
dc.date.accessioned | 2014-12-08T15:35:48Z | - |
dc.date.available | 2014-12-08T15:35:48Z | - |
dc.date.issued | 2014-06-01 | en_US |
dc.identifier.issn | 0022-0396 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jde.2014.03.001 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/24185 | - |
dc.description.abstract | We consider the behavior of solutions to the water wave interaction equations in the limit epsilon -> 0(+). To justify the semiclassical approximation, we reduce the water wave interaction equation into some hyperbolic-dispersive system by using a modified Madelung transform. The reduced system causes loss of derivatives which prevents us to apply the classical energy method to prove the existence of solution. To overcome this difficulty we introduce a modified energy method and construct the solution to the reduced system. (c) 2014 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Zero dispersion limit | en_US |
dc.subject | WKB analysis | en_US |
dc.subject | System of dispersive equations | en_US |
dc.subject | Well-posedness | en_US |
dc.title | WKB analysis of the Schrodinger-KdV system | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jde.2014.03.001 | en_US |
dc.identifier.journal | JOURNAL OF DIFFERENTIAL EQUATIONS | en_US |
dc.citation.volume | 256 | en_US |
dc.citation.issue | 11 | en_US |
dc.citation.spage | 3817 | en_US |
dc.citation.epage | 3834 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | 數學建模與科學計算所(含中心) | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.contributor.department | Graduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000334727000013 | - |
dc.citation.woscount | 0 | - |
顯示於類別: | 期刊論文 |