Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Chi-Tungen_US
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWang, Kuo-Zhongen_US
dc.date.accessioned2014-12-08T15:35:48Z-
dc.date.available2014-12-08T15:35:48Z-
dc.date.issued2014-05-04en_US
dc.identifier.issn0308-1087en_US
dc.identifier.urihttp://dx.doi.org/10.1080/03081087.2013.811500en_US
dc.identifier.urihttp://hdl.handle.net/11536/24195-
dc.description.abstractLet denote the rank- numerical range of an -by- complex matrix . We give a characterization for , where , via the compressions and the principal submatrices of . As an application, the matrix satisfying , where is the classical numerical range of and , is under consideration. We show that if for some , then is unitarily similar to , where is a 2-by-2 matrix, is a -by- matrix and .en_US
dc.language.isoen_USen_US
dc.subject15A60en_US
dc.subjecthigher-rank numerical rangeen_US
dc.subjectnumerical rangeen_US
dc.subjectcompressionen_US
dc.subjectprincipal submatrixen_US
dc.titleEquality of higher-rank numerical ranges of matricesen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03081087.2013.811500en_US
dc.identifier.journalLINEAR & MULTILINEAR ALGEBRAen_US
dc.citation.volume62en_US
dc.citation.issue5en_US
dc.citation.spage626en_US
dc.citation.epage638en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000334080600007-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000334080600007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.