Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Yang-Yinen_US
dc.contributor.authorLiao, Shih-Huien_US
dc.contributor.authorChang, Jyh-Yeongen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:35:49Z-
dc.date.available2014-12-08T15:35:49Z-
dc.date.issued2014-05-01en_US
dc.identifier.issn2162-237Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/TNNLS.2013.2284603en_US
dc.identifier.urihttp://hdl.handle.net/11536/24202-
dc.description.abstractThis paper describes a self-evolving interval type-2 fuzzy neural network (FNN) for various applications. As type-1 fuzzy systems cannot effectively handle uncertainties in information within the knowledge base, we propose a simple interval type-2 FNN, which uses interval type-2 fuzzy sets in the premise and the Takagi-Sugeno-Kang (TSK) type in the consequent of the fuzzy rule. The TSK-type consequent of fuzzy rule is a linear combination of exogenous input variables. Given an initially empty the rule-base, all rules are generated with on-line type-2 fuzzy clustering. Instead of the time-consuming K-M iterative procedure, the design factors q(l) and q(r) are learned to adaptively adjust the upper and lower positions on the left and right limit outputs, using the parameter update rule based on a gradient descent algorithm. Simulation results demonstrate that our approach yields fewer test errors and less computational complexity than other type-2 FNNs.en_US
dc.language.isoen_USen_US
dc.subjectFuzzy identificationen_US
dc.subjecton-line fuzzy clusteringen_US
dc.subjecttype-2 fuzzy neural networks (FNNs)en_US
dc.subjecttype-2 fuzzy systemsen_US
dc.titleSimplified Interval Type-2 Fuzzy Neural Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TNNLS.2013.2284603en_US
dc.identifier.journalIEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMSen_US
dc.citation.volume25en_US
dc.citation.issue5en_US
dc.citation.spage959en_US
dc.citation.epage969en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000334738400009-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000334738400009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.