Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kao, SS | en_US |
dc.contributor.author | Hsu, LH | en_US |
dc.date.accessioned | 2014-12-08T15:35:53Z | - |
dc.date.available | 2014-12-08T15:35:53Z | - |
dc.date.issued | 2005-01-05 | en_US |
dc.identifier.issn | 0096-3003 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.amc.2003.06.005 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/24260 | - |
dc.description.abstract | In this paper, we propose a honeycomb mesh variation, called a spider web network. Assume that in and it are positive even integers with m greater than or equal to 4. A spider web network SW(m, n) is a 3-regular bipartite planar graph with bipartition C and D. We prove that the honeycomb rectangular mesh HREM(m, n) is a spanning subgraph of SW(m, n). We also prove that SW(m, n) - e is harniltonian for any e is an element of E and SW(m, n) - {c, d} remains hamiltonian for any c is an element of C and d is an element of D. These hamiltonian propel-ties are optimal. (C) 2003 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | bipartite | en_US |
dc.subject | 1-edge hamiltonian | en_US |
dc.subject | 1(p)-hamiltonian | en_US |
dc.subject | optimal | en_US |
dc.title | Spider web networks: a family of optimal, fault tolerant, hamiltoman bipartite graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.amc.2003.06.005 | en_US |
dc.identifier.journal | APPLIED MATHEMATICS AND COMPUTATION | en_US |
dc.citation.volume | 160 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 269 | en_US |
dc.citation.epage | 282 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000225269700023 | - |
dc.citation.woscount | 8 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.