Full metadata record
DC FieldValueLanguage
dc.contributor.authorKao, SSen_US
dc.contributor.authorHsu, LHen_US
dc.date.accessioned2014-12-08T15:35:53Z-
dc.date.available2014-12-08T15:35:53Z-
dc.date.issued2005-01-05en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.amc.2003.06.005en_US
dc.identifier.urihttp://hdl.handle.net/11536/24260-
dc.description.abstractIn this paper, we propose a honeycomb mesh variation, called a spider web network. Assume that in and it are positive even integers with m greater than or equal to 4. A spider web network SW(m, n) is a 3-regular bipartite planar graph with bipartition C and D. We prove that the honeycomb rectangular mesh HREM(m, n) is a spanning subgraph of SW(m, n). We also prove that SW(m, n) - e is harniltonian for any e is an element of E and SW(m, n) - {c, d} remains hamiltonian for any c is an element of C and d is an element of D. These hamiltonian propel-ties are optimal. (C) 2003 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectbipartiteen_US
dc.subject1-edge hamiltonianen_US
dc.subject1(p)-hamiltonianen_US
dc.subjectoptimalen_US
dc.titleSpider web networks: a family of optimal, fault tolerant, hamiltoman bipartite graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2003.06.005en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume160en_US
dc.citation.issue1en_US
dc.citation.spage269en_US
dc.citation.epage282en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000225269700023-
dc.citation.woscount8-
Appears in Collections:Articles


Files in This Item:

  1. 000225269700023.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.