Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | CHANG, PY | en_US |
dc.contributor.author | TSAY, JC | en_US |
dc.date.accessioned | 2014-12-08T15:03:55Z | - |
dc.date.available | 2014-12-08T15:03:55Z | - |
dc.date.issued | 1994-07-01 | en_US |
dc.identifier.issn | 0018-9340 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/12.293256 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/2436 | - |
dc.description.abstract | It has been shown that the method of decomposing a dependence graph into multiple phases with appropriate m-phase schedule function is useful for designing faster regular arrays for matrix multiplication and transitive closure. In this paper, we will further apply this method to design several parallel algorithms for Algebraic Path Problem and derive N x N 2-D regular arrays with execution time [9N/2] - 2 (cylindrical array and orthogonal one) and 4N - 2 (spherical one). | en_US |
dc.language.iso | en_US | en_US |
dc.subject | ALGEBRAIC PATH PROBLEM | en_US |
dc.subject | CYLINDRICAL ARRAY | en_US |
dc.subject | PARALLEL ALGORITHM DESIGN | en_US |
dc.subject | SYSTOLIC ARRAY | en_US |
dc.subject | SPHERICAL ARRAY | en_US |
dc.subject | TRANSITIVE CLOSURE | en_US |
dc.subject | VLSI ARCHITECTURE | en_US |
dc.title | A FAMILY OF EFFICIENT REGULAT ARRAYS FOR ALGEBRAIC PATH PROBLEM | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/12.293256 | en_US |
dc.identifier.journal | IEEE TRANSACTIONS ON COMPUTERS | en_US |
dc.citation.volume | 43 | en_US |
dc.citation.issue | 7 | en_US |
dc.citation.spage | 769 | en_US |
dc.citation.epage | 777 | en_US |
dc.contributor.department | 交大名義發表 | zh_TW |
dc.contributor.department | 工學院 | zh_TW |
dc.contributor.department | National Chiao Tung University | en_US |
dc.contributor.department | College of Engineering | en_US |
dc.identifier.wosnumber | WOS:A1994NW45800001 | - |
dc.citation.woscount | 8 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.