Full metadata record
DC FieldValueLanguage
dc.contributor.authorFu, Hung-Linen_US
dc.contributor.authorLo, Yuan-Hsunen_US
dc.contributor.authorShum, Kenneth W.en_US
dc.date.accessioned2014-12-08T15:36:01Z-
dc.date.available2014-12-08T15:36:01Z-
dc.date.issued2014-08-01en_US
dc.identifier.issn0925-1022en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10623-012-9764-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/24383-
dc.description.abstractA conflict-avoiding code (CAC) of length n and weight k is a collection of k-subsets of such that for any , , where . Let CAC(n, k) denote the class of all CACs of length n and weight k. A CAC with maximum size is called optimal. In this paper, we study the constructions of optimal CACs for the case when n is odd and k = 3.en_US
dc.language.isoen_USen_US
dc.subjectConflict-avoiding codeen_US
dc.subjectTight equi-difference conflict-avoiding codeen_US
dc.subjectOptimal code with weight 3en_US
dc.titleOptimal conflict-avoiding codes of odd length and weight threeen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10623-012-9764-5en_US
dc.identifier.journalDESIGNS CODES AND CRYPTOGRAPHYen_US
dc.citation.volume72en_US
dc.citation.issue2en_US
dc.citation.spage289en_US
dc.citation.epage309en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000336444600007-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000336444600007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.