Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Juengel, Ansgar | en_US |
dc.contributor.author | Lin, Chi-Kun | en_US |
dc.contributor.author | Wu, Kung-Chien | en_US |
dc.date.accessioned | 2014-12-08T15:36:02Z | - |
dc.date.available | 2014-12-08T15:36:02Z | - |
dc.date.issued | 2014-07-01 | en_US |
dc.identifier.issn | 0010-3616 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s00220-014-1961-9 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/24391 | - |
dc.description.abstract | A combined incompressible and vanishing capillarity limit in the barotropic compressible Navier-Stokes equations for smooth solutions is proved. The equations are considered on the two-dimensional torus with well prepared initial data. The momentum equation contains a rotational term originating from a Coriolis force, a general Korteweg-type tensor modeling capillary effects, and a density-dependent viscosity. The limiting model is the viscous quasi-geostrophic equation for the "rotated" velocity potential. The proof of the singular limit is based on the modulated energy method with a careful choice of the correction terms. | en_US |
dc.language.iso | en_US | en_US |
dc.title | An Asymptotic Limit of a Navier-Stokes System with Capillary Effects | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00220-014-1961-9 | en_US |
dc.identifier.journal | COMMUNICATIONS IN MATHEMATICAL PHYSICS | en_US |
dc.citation.volume | 329 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 725 | en_US |
dc.citation.epage | 744 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | 數學建模與科學計算所(含中心) | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.contributor.department | Graduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000336409200010 | - |
dc.citation.woscount | 1 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.