Full metadata record
DC FieldValueLanguage
dc.contributor.authorJuengel, Ansgaren_US
dc.contributor.authorLin, Chi-Kunen_US
dc.contributor.authorWu, Kung-Chienen_US
dc.date.accessioned2014-12-08T15:36:02Z-
dc.date.available2014-12-08T15:36:02Z-
dc.date.issued2014-07-01en_US
dc.identifier.issn0010-3616en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00220-014-1961-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/24391-
dc.description.abstractA combined incompressible and vanishing capillarity limit in the barotropic compressible Navier-Stokes equations for smooth solutions is proved. The equations are considered on the two-dimensional torus with well prepared initial data. The momentum equation contains a rotational term originating from a Coriolis force, a general Korteweg-type tensor modeling capillary effects, and a density-dependent viscosity. The limiting model is the viscous quasi-geostrophic equation for the "rotated" velocity potential. The proof of the singular limit is based on the modulated energy method with a careful choice of the correction terms.en_US
dc.language.isoen_USen_US
dc.titleAn Asymptotic Limit of a Navier-Stokes System with Capillary Effectsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00220-014-1961-9en_US
dc.identifier.journalCOMMUNICATIONS IN MATHEMATICAL PHYSICSen_US
dc.citation.volume329en_US
dc.citation.issue2en_US
dc.citation.spage725en_US
dc.citation.epage744en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.department數學建模與科學計算所(含中心)zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.contributor.departmentGraduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000336409200010-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000336409200010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.